Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment

نویسندگان

  • Andranik Tumasjan
  • Timm Oliver Sprenger
  • Philipp G. Sandner
  • Isabell M. Welpe
چکیده

Twitter is a microblogging website where users read and write millions of short messages on a variety of topics every day. This study uses the context of the German federal election to investigate whether Twitter is used as a forum for political deliberation and whether online messages on Twitter validly mirror offline political sentiment. Using LIWC text analysis software, we conducted a content analysis of over 100,000 messages containing a reference to either a political party or a politician. Our results show that Twitter is indeed used extensively for political deliberation. We find that the mere number of messages mentioning a party reflects the election result. Moreover, joint mentions of two parties are in line with real world political ties and coalitions. An analysis of the tweets’ political sentiment demonstrates close correspondence to the parties' and politicians’ political positions indicating that the content of Twitter messages plausibly reflects the offline political landscape. We discuss the use of microblogging message content as a valid indicator of political sentiment and derive suggestions for further research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the 2011 Dutch Senate Election Results with Twitter

To what extend can one use Twitter in opinion polls for political elections? Merely counting Twitter messages mentioning political party names is no guarantee for obtaining good election predictions. By improving the quality of the document collection and by performing sentiment analysis, predictions based on entity counts in tweets can be considerably improved, and become nearly as good as tra...

متن کامل

Can Collective Sentiment Expressed on Twitter Predict Political Elections?

Research examining the predictive power of social media (especially Twitter) displays conflicting results, particularly in the domain of political elections. This paper applies methods used in studies that have shown a direct correlation between volume/sentiment of Twitter chatter and future electoral results in a new dataset about political elections. We show that these methods display a serie...

متن کامل

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Election Forecasts With Twitter: How 140 Characters Reflect the Political Landscape

This study investigates whether microblogging messages on Twitter validly mirror the political landscape off-line and can be used to predict election results. In the context of the 2009 German federal election, we conducted a sentiment analysis of over 100,000 messages containing a reference to either a political party or a politician. Our results show that Twitter is used extensively for polit...

متن کامل

Identifying Political Sentiment between Nation States with Social Media

This paper describes an approach to largescale modeling of sentiment analysis for the social sciences. The goal is to model relations between nation states through social media. Many cross-disciplinary applications of NLP involve making predictions (such as predicting political elections), but this paper instead focuses on a model that is applicable to broader analysis. Do citizens express opin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010